
J. Fluid Mech. (1998), vol. 362, pp. 229–271. Printed in the United Kingdom

c© 1998 Cambridge University Press

229

Numerical investigation of the turbulent
boundary layer over a bump

By X I A O H U A W U AND K Y L E D. S Q U I R E S
Department of Mechanical and Aerospace Engineering, Arizona State University,

Box 876106, Tempe, AZ 85287-6106, USA

(Received 12 July 1996 and in revised form 6 January 1998)

Large-eddy simulation (LES) has been used to calculate the flow of a statistically
two-dimensional turbulent boundary layer over a bump. Subgrid-scale stresses in the
filtered Navier–Stokes equations were closed using the dynamic eddy viscosity model.
LES predictions for a range of grid resolutions were compared to the experimental
measurements of Webster et al. (1996). Predictions of the mean flow and turbulence
intensities are in good agreement with measurements. The resolved turbulent shear
stress is in reasonable agreement with data, though the peak is over-predicted near
the trailing edge of the bump. Analysis of the flow confirms the existence of internal
layers over the bump surface upstream of the summit and along the downstream
trailing flat plate, and demonstrates that the quasi-step increases in skin friction
due to perturbations in pressure gradient and surface curvature selectively enhance
near-wall shear production of turbulent stresses and are responsible for the forma-
tion of the internal layers. Though the flow experiences a strong adverse pressure
gradient along the rear surface, the boundary layer is unique in that intermittent
detachment occurring near the wall is not followed by mean-flow separation. Certain
turbulence characteristics in this region are similar to those previously reported in in-
stantaneously separating boundary layers. The present investigation also explains the
driving mechanism for the surprisingly rapid return to equilibrium over the trailing
flat plate found in the measurements of Webster et al. (1996), i.e. the simultaneous
uninterrupted development of an inner energy-equilibrium region and the monotonic
decay of elevated turbulence shear production away from the wall. LES results were
also used to examine response of the dynamic eddy viscosity model. While subgrid-
scale dissipation decreases/increases as the turbulence is attenuated/enhanced, the
ratio of the (averaged) forward to reverse energy transfers predicted by the model is
roughly constant over a significant part of the layer. Model predictions of backscatter,
calculated as the percentage of points where the model coefficient is negative, show a
rapid recovery downstream similar to the mean-flow and turbulence quantities.

1. Introduction
Equilibrium turbulent boundary layers belong to a special class of flows in which

mean-flow self-preservation prevails (e.g. see Tennekes & Lumley 1972). In an equilib-
rium boundary layer production and dissipation of turbulence kinetic energy remain
roughly in balance for a significant part of the layer and external conditions that
define large-scale structures remain nearly unchanged (e.g. see Townsend 1976). As
such, well-defined equilibrium boundary layers have provided a suitable framework
for substantially advancing our understanding of turbulent flows using experiments,
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theory, and numerical simulation. Most flows encountered in applications, however,
are typically subject to perturbations in external conditions, e.g. pressure gradient,
curvature, rotation, roughness, blowing and suction, etc. In these flows a well-defined
equilibrium condition may no longer exist and boundary layer properties become
substantially more complicated. Consequently, current understanding and predictive
capabilities of non-equilibrium boundary layers are less well developed than for
equilibrium flows.

The particular interest of the present study is large-eddy simulation (LES) of the
non-equilibrium turbulent boundary layer flowing over a bump. The bump is formed
by a prolonged convex surface with two additional short concave regions fore and aft
(figure 1). The flow over the bump permits examination of boundary layer distortion
by combined perturbations in streamwise pressure gradient and surface curvature, and
recovery following the removal of external perturbations. The particular configuration
shown in figure 1 is considered since boundary layer properties have been reported by
Webster, Degraaff & Eaton (1996) and provide a means for evaluation of simulation
results. As described in §2, the subgrid stress is closed using the dynamic eddy
viscosity model of Germano et al. (1991). In addition to examination of boundary
layer properties, the flow over the bump also affords an appropriate platform for
examination of the dynamic model in a strongly distorted non-equilibrium flow.

In §1.1 a survey of previous work on boundary layer response to perturbations in
streamwise pressure gradient and surface curvature is presented. An overview of LES
and dynamic modelling is summarized in §1.2. In §1.3, the objectives of this study
are framed through discussion of three important issues relevant to non-equilibrium
turbulent boundary layers.

1.1. Effects of streamwise pressure gradient and surface curvature

Boundary layer response to singular perturbations in pressure gradient or curvature, as
well as the relaxation of the flow back to an equilibrium condition, has been examined
in a number of studies. The individual effect of a step application of curvature on
an initially equilibrium turbulent boundary layer is now reasonably well known (e.g.
see So & Mellor 1973; Gillis & Johnston 1983; Muck, Hoffmann & Bradshaw 1985;
Hoffmann, Muck & Bradshaw 1985; Moser & Moin 1987, Barlow & Johnston 1988).
These studies have demonstrated that there is not only a distinction between the
effects of concave and convex curvature, but also a substantial distinction between
the effects within each category (convex or concave) depending on the strength of
the perturbation. Similar to curvature, a step change in streamwise pressure gradient
has also been the subject of several investigations (e.g. see Bradshaw & Galea 1967;
Samuel & Joubert 1974; Tsuji & Morikawa 1976). Previous work on boundary
layer response to pressure gradient has also shown that the flow may exhibit a very
different response depending on the strength of the pressure gradient being applied
(e.g. separated versus attached). A comprehensive review of separated turbulent
boundary layers can be found, for example, in Simpson (1989, and references therein).
Spalart & Watmuff (1993) conducted concurrent direct numerical simulations (DNS)
and experiments on a flat-plate boundary layer under an adverse pressure gradient.
The predicted mean velocity and turbulence intensities were in excellent agreement
with the experiments. Recently, Na & Moin (1996) performed a spatially developing
DNS on the same flow and reached similar conclusions as those of Spalart & Watmuff
(1993).

Investigations of boundary layer response to perturbations in both pressure gradient
and curvature show that the combined influence of external perturbations is not a
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Figure 1. (a) Top view of the computational domain; (b) bump dimensions; D,E, F, G: tangent
points; upstream concave surface: 0 6 xw/Lc 6 1/12; convex surface: 1/12 6 xw/Lc 6 11/12;
downstream concave surface: 11/12 6 xw/Lc 6 1.

simple summation of their separate effects (e.g. see Smits, Eaton & Bradshaw 1979;
Smits & Wood 1985). Relevant to this work are the studies reported by Baskaran,
Smits & Joubert (1987), Bandyopadhyay & Ahmed (1993), and Webster et al. (1996).
Baskaran et al. (1987) measured the flow on a hill formed by three tangential arcs
(concave, convex, concave). Measurements were made to a location downstream of the
summit where separation occurred. ‘Knee points’ in profiles of the turbulent stresses
on the convex surface were attributed to the formation of an internal layer caused by
the curvature transition from concave to convex. Baskaran et al. (1987) established
a threshold criterion in terms of the curvature discontinuity in which an internal
layer would form. Properties of the turbulent boundary layer flowing over a bump
were measured by Webster et al. (1996). In their work the boundary layer did not
separate downstream of the summit as in Baskaran et al. (1987). Webster et al. (1996)
attributed most of the response of the boundary layer to streamwise pressure gradient
since curvature effects were less apparent in the measurements. They also noted the
formation of internal layers related to the step changes in curvature. Signatures of
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an internal layer caused by a step change in curvature were also reported in the
experimental investigation of Bandyopadhyay & Ahmed (1993).

Parallel to the departure from equilibrium caused by changes in streamwise pressure
gradient and surface curvature, the return to equilibrium of a turbulent boundary
layer following the removal of these perturbations is also of interest. Bandyopadhyay
& Ahmed (1993) found that the skin friction in a boundary layer recovering from
a sequence of concave–convex curvature was low and proposed that viscous drag
reduction might therefore be accomplished using curvature. Their measurements were
similar to the earlier work of Gillis & Johnston (1983) which showed that the recovery
of the skin friction is slow in a boundary layer following the removal of prolonged
convex curvature (in the absence of external pressure gradients). Gillis & Johnston
(1983) also found that turbulence intensities underwent a long recovery and proposed
that turbulence structure does not ‘spring back’ to its original state as if it had been
artificially held down by curvature; rather, the eddy structure must slowly enlarge
itself in the same way that the turbulence structure of a developing flat-plate boundary
layer enlarges itself. In a similar flow Alving, Smits & Watmuff (1990) found that the
mean flow approached the unperturbed state monotonically and at a relatively more
rapid rate. However, recovery of the turbulent stresses in their experiment was very
slow.

The complex response of boundary layers subjected to multiple external perturba-
tions in turn complicates modelling of these non-equilibrium flows. The situation is
well described by Bandyopadhyay & Ahmed (1993): ‘The modeling is fraught with
difficulty because the lag behaviour of large eddies in the simultaneous presence of
repeatedly applied complex strains of curvature, pressure gradient, lateral divergence
and compressibility, is unknown’. Gibson, Jones & Younis (1981) found, for exam-
ple, that predictive methods based on modelling the full Reynolds-stress transport
equations fail to reproduce the convex-flat relaxation process measured by Gillis
& Johnston (1983). Therefore, other approaches are required in order to perform
numerical investigations of non-equilibrium boundary layers.

1.2. LES and dynamic subgrid modelling

In this work LES of the incompressible Navier–Stokes equations is employed. Since
the large eddies are computed directly, only the effect of the smallest (subgrid) scales
of motion are modelled. This should be an advantage in simulation of non-equilibrium
boundary layers since, although the large eddies may depend significantly on changes
in external conditions and flow history, the small eddies probably respond more
rapidly to external perturbations. Therefore, it is still reasonable to model the small
scales using simple closures, e.g. eddy viscosity formulations such as the dynamic
subgrid-scale (SGS) model of Germano et al. (1991).

The concept of dynamic modelling is a method for evaluating SGS model coef-
ficients directly from information contained in the resolved turbulent velocity field.
The model is formulated to sample turbulent stresses from a band of the smallest
resolved scales and then extrapolates this information to the SGS range (e.g. see
Meneveau, Lund & Cabot 1996). The implementation involves application of an
explicit test filter of width greater than the usual grid filter width, and calculation of
the stress tensors in the resolved flow with and without this filter operation. In the
eddy viscosity formulation, the assumption that the Smagorinsky model should apply
on both scales, and use of an identity, leads to a model coefficient C as a function of
position and time, which varies in both magnitude and sign (e.g. see Mason 1994). A
negative value of C indicates a flow of energy from the small scales to the resolved



Numerical investigation of a turbulent boundary layer 233

scales, or backscatter, a favourable aspect of the model (Piomelli 1993; Ghosal et al.
1995). In practice, the numerical instability associated with locally negative C can be
remedied by averaging the coefficient over homogeneous directions which makes it a
more smoothly varying function that rarely becomes negative. Ghosal et al. (1995)
showed that for flows with at least one homogeneous direction the local least-squares
minimization introduced by Lilly (1992) for calculation of C coupled with spatial
averaging can be derived from a mathematically consistent variational formulation
and thus provides a theoretically sound foundation for the model.

Many of the important features of the dynamic eddy viscosity model have been
obtained from calculation of equilibrium turbulent flows. Piomelli (1993) applied the
model to prediction of turbulent channel flow at a range of Reynolds numbers and
presented quantities such as profiles of the model coefficient and its related positive
and negative contributions, SGS dissipation (including backscatter), and fraction of
points where the coefficient was negative (see also Najjar & Tafti 1996). Piomelli
(1993) concluded that one reason the model performs well in wall-bounded flows may
be the fact that the eddy viscosity is reduced if subgrid-scale backscatter occurs with
significant frequency. Jiménez (1995) analysed the model using simulations of isotropic
turbulence and found that the flow rapidly adjusted to artificial perturbations in the
model coefficient. The fact that the smallest resolved scales are sampled in the dynamic
procedure allows for a relatively rapid change of the coefficient to perturbations in
the flow. This feature, together with the fact that the eddy viscosity is sensitive
to the smallest resolved scales, allows for adjustments in the subgrid dissipation
without an overly adverse effect on the energy in the resolved scales, especially at the
lower wavenumbers which are responsible for the majority of momentum and energy
transport. It is important to remark that these and other positive aspects of dynamic
models, e.g. proper behaviour near walls, are observed in spite of the fact that the
model assumes scale similarity at the grid and test levels, conditions seldom satisfied
in many LES calculations.

The most important evidence of the robust nature of dynamic models has been
demonstrated through their successful application in a wide range of turbulent flows
including homogeneous turbulence, channel flow, cavity flow, free shear flows, rotating
turbulence, and the backward-facing step (e.g. see Germano et al. 1991; Moin et al.
1991; Piomelli 1993; Yang & Ferziger 1993; Zang, Street & Koseff 1993; Vreman,
Geurts & Kuerten 1994; Piomelli & Liu 1995; Ghosal et al. 1995; Lund & Moin
1996; Wu & Squires 1997). In these and other studies LES predictions are as good
as or better than other approaches requiring considerably more empirical input.

Previous investigations into the underlying foundation of dynamic models and
accurate LES predictions obtained using them motivate their application to complex
flows. In this regard, the work of Ghosal et al. (1995) on the backward-facing step
and Akselvoll & Moin (1995, 1996), who used dynamic models in LES calculations
of the flow of co-annular jets discharging into a sudden expansion, are notable
examples. In Akselvoll & Moin (1996) the dynamic eddy viscosity model was used to
close both the subgrid-scale stresses and subgrid-scale scalar flux. Mean velocity and
turbulence intensities were found to be in good agreement with experiments. Since
LES provides a time-dependent description of the large scales, Akselvoll & Moin
(1996) used simulation results to gain insight into the complex mixing characteristics
of the flow.

The reader is referred to Ghosal et al. (1995) and Meneveau et al. (1996) for
further discussion of dynamic models and to Lesieur & Metais (1996) for additional
discussion of the applicability of LES for investigating complex turbulent flows.
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1.3. Objectives

There are several important issues which have arisen from previous examinations of
strongly distorted non-equilibrium boundary layers. One of the issues central to this
investigation is the generation of internal layers through a discontinuity in surface
curvature, as proposed by Baskaran et al. (1987). The notion that internal layers are
initiated through curvature change is a matter of debate. For example, in a related
study by Alving et al. (1990), although the criterion established by Baskaran et al.
(1987) for generation of an internal layer due to curvature change was satisfied in
their experiments, signatures of an internal layer could not be found. Alving et al.
(1990) suggested that the concept of an internal layer growing from the wall with its
origin at the curvature discontinuity and remaining uninfluenced by the flow in the
parent boundary layer for significant distances, might be too simplistic (see Patel &
Sotiropoulos 1997 for further discussion). On the other hand, recent measurements
by Webster et al. (1996) clearly show distinct ‘knees’ in profiles of the streamwise
intensity downstream of the bump trailing edge and imply the generation of an
internal layer. It should also be noted that near the trailing edge the measurements
of Webster et al. (1996) do not show distinct knee points in the wall-normal and
spanwise intensities. Thus, one of the goals of this work is to clarify the existence
and provide an improved understanding of the cause of internal layers arising from
a discontinuity in curvature.

Subsequent to the initiation of internal layers is their downstream development.
Based upon discussion in Baskaran et al. (1987) and Webster et al. (1996), internal
layers generated near the leading edge of the bump are expected to develop continu-
ously downstream to separation or near the trailing edge where another discontinuity
in curvature occurs. Because the boundary layer over the surfaces of the bump up-
stream and downstream of the summit are under streamwise pressure gradients of
opposite sign, this would in turn suggest that the adverse pressure gradient down-
stream of the summit has little effect on the near-wall turbulence, which is inconsistent
with measurements from adverse pressure gradient flows (e.g. see Simpson, Chew &
Shivaprasad 1981a). Therefore, it is also of interest to clarify how the internal layer
evolves by studying whether turbulence properties over the rear surface of the bump
are a result of the sustained development of a possible upstream internal layer.

In addition to the issues directly linked to the existence, cause, and evolution of
internal layers, two important and unusual features emerge from the experiments of
Webster et al. (1996). They found that, unlike the experiments of Gillis & Johnston
(1983) and Alving et al. (1990), the boundary layer over the flat plate downstream
of the trailing edge exhibits a surprisingly rapid return to equilibrium. The rate
of recovery has profound implications on the use of curvature as a means for the
control of boundary layer development (e.g. see Bandyopadhyay & Ahmed 1993).
Thus, additional insight is needed to explain the driving mechanism behind such an
unusually fast return as observed in the experiments. Webster et al. (1996) also found
that the flow near the trailing edge is on the verge of detachment, though boundary
layer separation did not occur. As discussed in Simpson et al. (1981a), turbulent
detachment is a transitory process occurring over a considerable streamwise distance
(see also Buckles, Hanratty & Adrian 1984). Thus, it is possible that the boundary
layer over the bump may belong to a unique class of flows in that it undergoes
possible intermittent detachment, though without mean flow separation. Note in the
majority of previous work upstream intermittent transitory detachment results in a
downstream separation (see §4.1). Since in LES the time-dependent equations are
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solved, it is then possible to examine in detail the near-wall features of the flow in the
region of strong adverse pressure gradient, and to compare the statistical properties
with existing measurements on instantaneously separating flows.

Therefore, the main objective of this study is to resolve the important issues relevant
to boundary layer response to multiple changes in streamwise pressure gradient and
surface curvature as described above, i.e. the existence, cause and development of
internal layers, the mechanism of return to equilibrium, and the characteristics of a
flow on the verge of separation. A numerical investigation is also motivated by the
fact that the measurements of the flow over a hill by Baskaran et al. (1987) were
obtained mostly upstream of the summit due to separation downstream. Experimental
measurements in the identical geometry from Webster et al. (1996) are limited to the
region downstream of the summit. Thus, LES results can be used to provide a
complete picture of boundary layer evolution and also facilitate a detailed analysis
of the flow.

In addition to the physical insight gained from application of LES to a complex
boundary layer, an additional aim of this study is to gain insight into the properties
of the dynamic eddy viscosity model in a flow exhibiting strong departure from
equilibrium. The response of the model in complex configurations is not easily
extrapolated from previous work in canonical flows, e.g. its response as the flow
departs from and then returns to equilibrium. The principal focus of this aspect
of the study is to examine the behaviour of the model in response to combined
perturbations in streamwise pressure gradient and curvature.

The remainder of this paper is organized towards clearly honouring the objectives
discussed above. A detailed description of the overall computational approach is first
presented in §2, with the governing equations and subgrid-scale model described in
§2.1. The numerical method, inflow generation scheme, and other boundary conditions
are summarized in §2.2. In order to analyse the simulation results with confidence,
it is necessary to establish the accuracy of the LES prior to directly examining flow
physics and response of the SGS model. This task is addressed in §3 where predictions
of the mean velocity and second-order statistics for a range of grid resolutions, and
calculations performed with and without the SGS model, are thoroughly compared
with the experimental data of Webster et al. (1996). As shown in §3, although some
differences between LES predictions and measurements do exist, the calculations
reproduce the overall evolution of the boundary layer to a reasonable accuracy and
establish the validity of the computational approach for the subsequent analysis of
the flow in §4 and response of the model in §5.

2. Simulation overview
2.1. Governing equations and dynamic SGS model

The coordinate-independent form of the continuity equation and Navier–Stokes equa-
tions for an incompressible fluid are

∇ · u = 0, (2.1)

∂u

∂t
+ ∇ · (uu) = −∇ p+ ∇ ·

{
1

Re
[∇ u+ (∇ u)T ]

}
, (2.2)

where T denotes the transpose. Solution of the governing equations for the flow over
the bump is performed on a set of semi-curvilinear grids. The transformation of the
physical domain to a uniform computational space is accomplished by introducing
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the mappings

ξ =H1(x ), η =H2(x , y), ζ =H3(z ), (2.3)

in which the computational grid has a uniform spacing ∆c. Note that as shown by
(2.3), the coordinate planes H1 = constant and H3 = constant are Cartesian. An
additional restriction imposed is that in physical space the grid spacings along the
x- and z-directions are uniform; non-uniform stretching is applied only along the
y-direction.

Following Ghosal & Moin (1995), for a fully curvilinear and three-dimensionally
non-uniform mapping, the velocity vector u (and similarly for pressure p) is trans-
formed from the physical space to the computational space, u(x, y, z)→ u[H(ξ, η, ζ)],
where H is the inverse of H. The field in computational space is then filtered on the
uniform grid

u[H(ξ, η, ζ)]→ 1

∆3
c

∫ ∫ ∫
G

(
ξ − ξ′

∆c

)
G

(
η − η′

∆c

)
G

(
ζ − ζ ′

∆c

)
u[H(ξ′, η′, ζ ′)]dξ′dη′dζ ′.

(2.4)

where G is a one-dimensional top-hat filter. Transformation back to physical space
yields the filtered field

u(x, y, z) =
1

∆3
c

∫ ∫ ∫
G

(
H1(x )− ξ′

∆c

)
G

(
H2(x , y)− η′

∆c

)
G

(
H3(z )− ζ ′

∆c

)
u[H(ξ′, η′, ζ ′)]dξ′dη′dζ ′. (2.5)

Application of (2.3)–(2.5) to (2.1) and (2.2) yields the filtered equations governing
motion of the large scales

∇ · u = 0, (2.6)

∂u

∂t
+ ∇ · (uu) = −∇ p+ ∇ · (−τ ) + ∇ ·

{
1

Re
[∇ u+ (∇ u)T ]

}
+ Ec , (2.7)

where τ is the subgrid-scale stress tensor with Cartesian components τij . In (2.6)
and (2.7) an overbar denotes the filtered variable, u is the resolved velocity vector
whose Cartesian components are (u,v,w). Velocities in (2.6) and (2.7) are normalized
by the inflow free-stream value Uref , lengths by the bump height h, and Re = Urefh/ν
where ν is the kinematic viscosity. The term Ec appearing in (2.7) represents the
error due to the fact that in general the filtering operation does not commute with
differentiation. As demonstrated by Ghosal & Moin (1995), for a fully curvilinear and
three-dimensionally non-uniform mapping the commutation error associated with
the filtering operation (2.3)–(2.5) is second-order in the filter width, i.e. Ec ∼ O(∆2

c ).
Thus, for calculation of spatial derivatives using approximations which are second-
order accurate, as in the present work, filtering can be assumed to commute with
differentiation, i.e. the error due to lack of commutivity is the same order as the
truncation error of the method.

The SGS stress in (2.7), τij = uiuj − uiuj , is parameterized using the Smagorinsky
model

τij −
δij

3
τkk = −2νTS ij = −2C∆

2|S |Sij , (2.8)

in which δij is the Kronecker delta and |S | = (2SijS ij)
1/2 is the magnitude of the
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large-scale strain rate tensor,

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2.9)

Note that the trace of the subgrid-scale stress, τkk , is not modelled; rather it is added
to the pressure variable p.

Following Germano et al. (1991), a second filter, the test filter (denoted using ̂ ) is
used to derive an expression for the model coefficient C in (2.8). The key feature of
this procedure is use of the identity

Lij = Tij − τ̂ij , (2.10)

which relates the resolved turbulent stress, Lij = ûiuj − ûiûj , the subgrid-scale stress

τij , and the subtest-scale stress Tij = ûiuj − ûiûj (Germano 1992). It is assumed that
the subtest stresses can be parameterized by an expression similar to that used to
model τij ,

Tij −
δij

3
Tkk = −2C∆̂

2

|Ŝ |Ŝ ij . (2.11)

On substituting (2.8) and (2.11) into (2.10) a system of five equations for determining
C is obtained:

Lij −
δij

3
Lkk = −2C∆̂

2

|Ŝ |Ŝ ij + 2̂C∆
2 |S |Sij . (2.12)

It is not possible to satisfy (2.12) using a single coefficient C . The error in solving
(2.12) should then be minimized (the original formulation in Germano et al. 1991
minimized the error by requiring it to be orthogonal to the resolved strain-rate
tensor). Ghosal et al. (1995) noted that since C appears inside the filtering operation,
(2.12) is a system of integral equations. They used a variational approach to minimize
the error in a global least-squares sense, leading to a single integral equation for C .
Ghosal et al. (1995) also showed that simpler expressions for C can be obtained if
one places constraints on the coefficient. For example, if C is constrained to have
no variation over spatially homogeneous directions and the test filter is applied over
these directions, then the following expression is obtained:

C = −1

2

〈LijMij〉
〈MijMij〉

, (2.13)

where

Mij = ∆̂
2

|Ŝ |Ŝ ij − ∆
2 |̂S |Sij . (2.14)

In (2.13), 〈·〉 indicates an average over homogeneous directions, while in (2.14) the

filter widths at the subgrid and subtest levels are denoted by ∆ and ∆̂, respectively. It
should also be noted that (2.13) was obtained by Lilly (1992), in which C was removed
from the test filter as in Germano et al. (1991) and the error in the resulting system
was made orthogonal to Mij . In practice, the ‘averaged’ coefficient (2.13) is nearly
always positive, consistent with the overall transfer of energy being from resolved to
subgrid scales.

In the results presented in this paper, averaging of the numerator and denominator
in (2.13) is performed over the homogeneous spanwise direction. Note that to be
consistent the test filter should then only be applied along the spanwise direction.
However, in this study the test filtering operation was performed in physical space
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on the coordinate plane H2 = constant using a top-hat filter of width equal to
two mesh spacings. Test filtering on planes H2 = constant together with (2.13)
for determining C is slightly inconsistent since (2.13) requires that the streamwise
direction be statistically homogeneous. It is assumed that streamwise variations are
relatively small in order to apply (2.13) (see also Ghosal et al. 1995; Lund & Moin
1996). Test filtering was performed numerically using Simpson’s rule of integration.
The coefficient C resulting from the spanwise averaging is time-dependent and a
function of the two inhomogeneous coordinates. A clipping function was used to
ensure non-negative of values of C following the spanwise averaging applied to
(2.13). The effect of this clipping operation is discussed in §5.

2.2. Numerical method and computational details

The numerical methodology adopted to solve the filtered continuity and momentum
equations (2.6) and (2.7) is the generalized fractional step method (e.g. see Rosenfeld,
Kwak & Vinokur 1991; Choi, Moin & Kim 1993). Spatial derivatives are approxi-
mated using second-order accurate central differences on a staggered grid. As defined
by (2.3), the computational domain is transformed from the Cartesian (x, y, z) system
to a body-fitted curvilinear non-orthogonal system (ξ, η, ζ) where ξ is the streamwise
coordinate and η is the coordinate normal to the flat plate. The dependent vari-
able u is transformed from (u, v, w) to a volume flux vector using area vectors. At
the end of each time step, the Cartesian velocity components (u, v, w) are recovered
to compute the model coefficient C using the procedure given in (2.8)–(2.14). A
streamline-normal coordinate system (s, n, z) was used for post-processing with the
n-axis perpendicular to the lower surface (figure 1). The corresponding velocity com-
ponents in the streamline-normal system are denoted (us, un, uz). Turbulence statistics
were accumulated in both coordinate systems.

Measurements obtained by Webster et al. (1996) showed that the bump caused a
relatively small distortion of the flow at a location one-third chord length upstream
of the onset of curvature (x/Lc = −1/3 in figure 1). In order to compare LES
predictions to experimental measurements it is necessary to specify in the simulations
a realistic, two-dimensional boundary layer at the same location. In the current
study, a time-dependent velocity field at the inflow boundary was obtained through a
separate LES calculation of a canonical flat-plate boundary layer over a continuous
momentum-thickness Reynolds number range 1400 6 Reθ 6 1700. The method used
for generating the time-dependent turbulent inflow condition is based on the multiple
scale analysis of Spalart (1988), which exploits the slow growth of the flat-plate
boundary layer. The main idea is to construct a set of streamwise coordinates along
which the application of periodic boundary conditions for the fluctuating turbulent
signal (after removing the mean and r.m.s. values) is tolerable (see Spalart 1988).
The streamwise length of the domain for the pre-computation is 15δref . The grid
resolution and other dimensions are the same as those in the bump simulation. Further
details of the inflow generation are presented in Lund, Wu & Squires (1996, 1998).
After a statistically steady state had been achieved, the three velocity components
at a streamwise station Reθ = 1500 were stored for 300δref/Uref at a time step
dt = 0.01δref/Uref and were subsequently fed to the inlet (x/Lc = −1/3) of the
spatially developing bump flow simulation.

The origin of the streamwise (x) coordinate is at the onset of curvature (figure 1).
The bump chord-to-height ratio (Lc/h) is 15.2:1. The height of the computational
domain is 0.56Lc measured from the flat plate (y = 0). The length of the upstream
and downstream flat plates are 1/3Lc and 2/3Lc, respectively, and the width is 0.22Lc.
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On the top surface of the computational domain, the boundary conditions ∂u/∂y = 0,
v = 0, and w = 0 were applied. At the exit plane a convective boundary condition
∂u/∂t + Vconv∂u/∂x = 0 was used (Vconv is the bulk velocity at the outlet) together
with a correction on the streamwise velocity to ensure global mass conservation (see
also Wu & Squires 1995; Akselvoll & Moin 1996). Periodic boundary conditions were
applied in the spanwise direction.

The computational grid was generated using the direct distribution control tech-
nique of Thomas & Middlecoff (1980), in accordance with the mapping defined in
(2.3). The grids were constructed so that the coordinate lines ξ = constant are per-
pendicular to the flat plate y = 0 as well as to the top surface of the computational
domain.

Using the inlet profile at t = 0 as initial condition, the flow was allowed to evolve
for 100δref/Uref and statistics were then collected for a period of 200δref/Uref . Unless
otherwise noted 〈 · 〉 represents averaging over time as well as along the spanwise di-
rection, the ′ superscript denotes fluctuating quantities after being subtracted from the
mean. ‘Upstream’ is reserved for streamwise locations upstream of the bump summit
(e.g. ‘upstream bump surface’), and ‘downstream’ will be used to indicate locations
in the flow downstream of the bump summit. Comparison with the measurements of
Webster et al. (1996) is made in the Cartesian (x, y, z) system along vertical traverses
(constant x); most of the other results are presented in the streamline-normal coor-
dinate system (s, n, z). Finally, the w subscript is reserved for surface values, and the
ref subscript refers to quantities measured at the inlet station.

3. Simulation validation
A series of calculations was performed to validate the overall computational ap-

proach. These simulations are necessary because, although LES is less susceptible
to modelling errors than Reynolds-averaged methods, it is still difficult to base sub-
sequent analysis upon results obtained using a single set of numerical parameters.
Details of the numerical parameters used in the validation tests are summarized in
table 1, where wall units are based on the inflow friction velocity. As shown in the
table, the grid resolution used in Case 1, ∆x+ = 44 and ∆z+ = 21, is comparable
to those in other LES calculations of complex flows (e.g. see Lund & Moin 1996).
Filtering was not applied along the wall-normal coordinate due to ambiguities con-
cerning treatment of the mean velocity (e.g. see Horiuti 1993) and the first grid point
along the η-coordinate was within one wall unit. Compared to Case 1, the streamwise
grid resolution in Case 2 and Case 3 was coarsened by 50%, and the spanwise grid
spacing was doubled in Case 3. Results from these cases will be used to demonstrate
that the mean and second-order statistics resolved in the LES have converged to
an acceptable level with respect to improved grid resolution, bearing in mind that
an absolute invariance in LES may not be possible since more turbulence scales are
resolved as the grid is refined. In Case 1n and Case 3n, calculations were performed
in which no subgrid model was used, which allows assessment of the overall effect of
the model through comparison with predictions obtained using the dynamic model
at the same grid resolution.

Mean velocity profiles at nine streamwise locations are compared with the ex-
perimental measurements of Webster et al. (1996) in figure 2. The first station
(x/Lc = −1/3) is at the inflow boundary and the next eight stations are on the
downstream side of the bump. The velocity profiles are normalized by the inflow



240 X. Wu and K. D. Squires

Case (x, y, z) ∆x+ ∆z+ Model

Case 1 240× 75× 65 44 21 Dynamic
Case 1n 240× 75× 65 44 21 No model
Case 2 157× 75× 65 67 21 Dynamic
Case 3 157× 75× 33 67 42 Dynamic
Case 3n 157× 75× 33 67 42 No model

Table 1. Summary of numerical parameters
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Figure 2. Mean velocity 〈u〉/Uref . ◦, Webster et al. (1996); LES: ——, Case 1; · · · · ·, Case 2;
– – – – –, Case 3; — ·—, Case 1n; — – —, Case 3n.

free-stream velocity Uref . The vertical coordinate is normalized by the corresponding
inflow momentum thickness θref based on 99%Uref .

At all streamwise stations the predicted mean profiles from Case 1 and Case 2
collapse and are in reasonably good agreement with the experimental measurements
of Webster et al. (1996). At the inflow boundary the LES pre-computation used
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to generate the inflow signal yields a mean profile with a logarithmic region for
30 < y+ < 200 (see figure 12a). Over the entire downstream side of the bump
the agreement between Case 1 and Case 2 LES predictions and experiments is
good with the exception of the near-surface region along x/Lc = 11/12 (figure 2e).
At this location the boundary layer exhibits relatively strong intermittent reversal
(figure 11). Over the downstream flat plate, LES predictions compare reasonably well
with measurements and show a rapid relaxation to the upstream profile. Although
not shown here, LES predictions of the mean vertical velocity 〈v〉 are also in good
agreement with the experimental data.

With the exception of the three stations near the bump trailing edge, Case 1 and
Case 2 results also show small differences from those predicted in Case 3 using the
coarsest resolution. At x/Lc = 5/6, 11/12, and 1, Case 3 profiles exhibit a measurable
under-prediction compared to those from Case 1 and Case 2 in the near-wall region
(y < θref). Away from the wall the three sets of results again collapse. Overall, the
mean flow for Cases 1–3 is adequately converged with respect to increasing grid
resolution. Without the SGS model, the mean velocity predicted in Case 1n and
Case 3n is nearly identical with that from Case 1 and Case 3 for x/Lc < 2/3
and x/Lc > 7/6, indicating that at the given resolution the effect of the model on
prediction of the mean flow is small in these regions. Near the trailing edge, no-model
predictions of the mean flow exhibit larger differences from the predictions with the
model (x/Lc = 5/6, 11/12 and 1).

Predictions of the resolved horizontal turbulence intensity are compared with
the experimental measurements in figure 3. As shown in figure 3(a), the LES pre-
computations are in reasonably good agreement with those measured by Webster
et al. (1996) at the inflow boundary, x/Lc = −1/3. At the eight downstream stations
the profiles of u′rms/Uref from Case 1 and Case 2 have essentially collapsed, and also
exhibit small differences compared to the coarser grid Case 3 calculation. Furthermore,
the three sets of LES predictions from Cases 1–3 are also in good agreement with the
experimental measurements and accurately reproduce several interesting features in
the streamwise variations of u′rms as found in the experiments. The knee in the profile
at the summit (figure 3b) is the same as that observed by Baskaran et al. (1987) and
Webster et al. (1996), which results from the destruction of turbulence production in
the outer region of the boundary layer by convex curvature and favourable pressure
gradient and the development of an internal layer over the upstream convex surface
(see §4 for further discussion). The outward shift in the peak streamwise fluctuation
near the downstream concave-to-flat tangent (figure 3d–f) is typical in turbulent
boundary layers experiencing strong adverse pressure gradient (e.g. see Baskaran
et al. 1987; Simpson 1989). The near-wall peak in the streamwise fluctuations shown
in figure 3(g) results from the recovery of the inner shear production corresponding
to the sudden increase in Cf (cf. figure 10) and the formation of a new internal layer,
and the peak away from the wall is a decay of that shown in figure 3(f). Note also
that the rapid relaxation of the turbulence intensity on the downstream flat plate was
also reasonably well captured in the LES calculations. At x/Lc = 3/2, the profiles
have nearly asymptoted to those at the upstream inlet station. Compared with the
LES predictions using the dynamic model, the two sets of no-model calculations,
Case 1n and Case 3n, in figure 3 show a noticeable over-prediction of u′rms, e.g. at
x/Lc = 2/3 and 11/12. The deviation of Case 3n predictions from the experimental
measurements is substantial, suggesting a relatively large overall effect of the model
at the coarsest resolution. At the finer resolution used in Case 1 and Case 1n, the
deterioration of the Case 1n predictions is less severe than for Case 3n.
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Figure 3. Turbulence intensity u′rms/Uref , for legend refer to figure 2.

Predictions of the vertical and spanwise fluctuating velocities are presented in
figure 4 and figure 5, respectively. Similar to the streamwise component, predictions
obtained using the dynamic model from Cases 1–3 show relatively small variation with
changes in grid resolution. As also clear from figure 4 and figure 5, LES predictions
from these cases are in good agreement with the experimental measurements of
Webster et al. (1996). It is interesting to note that in contrast to the streamwise
intensity, v′rms and w′rms do not exhibit knee points over the summit and downstream
of the trailing edge (see §4.1 for further discussion). In calculations without the model
(Case 1n and Case 3n), the over-prediction of the vertical and spanwise turbulence
intensities is relatively large compared to those obtained using the dynamic model,
with the discrepancy more apparent at the coarser resolution used in Case 3n (e.g.
see figure 5c–e). The spanwise spectra of the turbulence kinetic energy at three
representative streamwise stations from the Case 2 and Case 3 calculations are shown
in figure 6. Consistent with the mean flow and fluctuations shown in figures 2–
5, the spectra show that the flow is reasonably well resolved. Good agreement is
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Figure 4. Turbulence intensity v′rms/Uref , for legend refer to figure 2.

also observed between the two calculations, with a slight pile up of energy at high
wavenumbers for Case 3. It should also be remarked that, while figure 6 shows that the
resolution for Case 2 may be somewhat conservative, it is consistent with requirements
in LES with direct application of no-slip boundary conditions, i.e. relatively fine grid
spacings are required to resolve near-wall structures. While the drawback is that LES
calculations are Reynolds number dependent, less burden is placed on the subgrid
model, thus reducing errors introduced through the use of (2.8).

Predictions of the resolved turbulent shear stress −〈u′v′〉 are shown in figure 7.
Figure 7(a) shows that the shear stress from the LES pre-computation used to generate
the inflow condition is higher than that measured by Webster et al. (1996) for Case 1
and in good agreement with the experiments for Case 3. At the summit, x/Lc =
1/2, LES predictions of the reduction in the shear stress by convex curvature and
favourable pressure gradient are in reasonably good agreement with measurements,
with a slight over-prediction as evident in the figure. For the streamwise positions
along the rear bump surface shown in figure 7(c–f) where the boundary layer
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Figure 5. Turbulence intensity w′rms/Uref , for legend refer to figure 2.

experiences strong adverse pressure gradient, LES predictions capture the significant
increase in the shear stress near the wall. In this region, figure 7(b–f) also shows that
LES predictions performed with the dynamic model from Cases 1–3 are essentially
insensitive to changes in resolution. In the recovery region over the downstream flat
plate, shear stress profiles from Cases 1–3 exhibit slightly larger differences, with an
over-prediction in peak levels apparent at x/Lc = 1 and 7/6. The convergence in
the shear stress for Cases 1–3 is similar to that observed in the turbulence intensities
shown in figures 3–5 and shows that the fluctuations have been reasonably well
resolved. Figure 7(c–e) also shows that the shear stress is over-predicted in Case 1n
and Case 3n where no subgrid model was used. The over-prediction (especially in
the outer region) persists downstream of the trailing edge for the coarser resolution
used in Case 3n. However, for the finer resolution no-model calculation (Case 1n),
the peak shear stress in the recovery region is in better agreement with measurements
than in Case 1. It should be noted that the peak in the shear stress profile over the
downstream flat plate is a result of the decay of those shown in figure 7d, e, which
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Figure 6. Spanwise spectra of turbulence kinetic energy, lines Case 2; symbols: Case 3.
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are produced under strong adverse pressure gradient. Apparently, at finer resolution
the no-model calculation yields a more rapid rate of decay than obtained using the
dynamic model.

Overall, there is good agreement between LES predictions of the mean flow and
second-order statistics from Cases 1–3 and the experimental data of Webster et al.
(1996). The mean flow and fluctuating velocities are accurate and in good agreement
with measurements. The largest discrepancy between predictions and measurements
occurs in the shear stress. LES predictions of the enhancement and recovery of the
shear stress, for example, are relatively accurate except for a few locations near the
wall. As demonstrated in figures 2–7, the flow is reasonably well resolved and relatively
insensitive to changes in grid resolution. Therefore, the effect of numerical errors (e.g.
discretization error, etc.) on prediction of the shear stress is relatively small. One
complicating feature of the flow is that the boundary layer on the rear surface of the
bump is on the verge of separation, experiencing intermittent reversal in the region of
over-predicted shear stress (cf. figure 8, figure 11). Previous measurements on adverse
pressure gradient flows have shown that intermittent detachment results in large
shear stress just outside the region of instantaneous backflow. Differences between
computation and experiment leading to relatively stronger effects of intermittent
backflow in the LES would in turn yield larger shear stress.

Some of the differences between LES and experiment are caused by errors in the
subgrid model. The SGS model used in this work is based on an eddy viscosity
formulation which requires that the principal axes of the SGS stress tensor be aligned
with the resolved strain rate. In addition, the expression for the eddy viscosity
is based on equilibrium between production and dissipation of turbulence kinetic
energy. Alignment between stress and strain is restrictive and in regions of the flow
where there are strong departures from equilibrium (e.g. near the trailing edge of the
bump), eddy viscosity models should not be expected to be as accurate. Mixed models
in which the SGS stress and resolved strain rate are not aligned would presumably
yield a more accurate accounting of non-equilibrium effects (e.g. Zang et al. 1993).
Nevertheless, previous work has shown that even eddy viscosity models tend to adjust
to yield approximately the correct level of SGS dissipation (e.g. see Akselvoll &
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Figure 7. Resolved turbulent shear stress −〈u′v′〉/U2
ref , for legend refer to figure 2.

Moin 1995). In the present calculations, without the contribution of the SGS model
(Case 1n and Case 3n), fluctuation levels are over-predicted, showing the positive role
played by the dynamic model.

In summary, the results presented in this section demonstrate that the strong depar-
ture from, and return to, equilibrium in the mean flow and turbulence intensities have
been captured in the LES, both qualitatively and quantitatively. As the flow passes
over the bump, the turbulent shear stress experiences large streamwise variations, i.e.
substantial suppression over the summit by favourable pressure gradient and convex
curvature, strong elevation near the trailing edge due to adverse pressure gradient
and concave curvature, and a rapid relaxation over the downstream flat plate as the
perturbations are removed. These features have all been reasonably well captured
in the LES. As discussed above, peak values of the shear stress are over-predicted.
However, we believe this discrepancy between measurements and simulations does
not invalidate use of the calculations to analyse the flow and examine response of
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the model. Unless otherwise stated, the results to be presented in §4 and §5 are from
Case 1.

4. Flow analysis
4.1. Overall boundary layer development

The surface static pressure coefficient, Cpw = (〈pw〉 − 〈pw,ref〉)/ 1
2
U2
ref , is compared

with the experimental measurements of Webster et al. (1996) in figure 8(a). There
is good agreement between the simulation results and experimental measurements.
The figure shows that the streamwise pressure gradient is mildly adverse over the
upstream flat plate. Near the bump, Cpw increases rapidly, i.e. the streamwise pressure
gradient becomes strongly adverse. Over the upstream concave surface, this relatively
strong adverse pressure gradient changes to significantly favourable within a short
distance. From the middle of the upstream concave surface to the bump summit, Cpw
decreases monotonically to its minimum value, i.e. the pressure gradient is decreasingly
favourable. Downstream of the summit the streamwise pressure gradient is strongly
adverse and changes to mildly favourable over the flat plate. Figure 8(b) shows the
distributions of the non-dimensional pressure gradient parameters,

Pg =
d〈pw〉

ds

θref

U2
ref

, P+ =
ν

σ1.5
w

d〈pw〉
ds

, (4.1)

where σw is the wall shear stress. The three streamwise locations where Pg and P+

change sign (adverse-to-favourable, favourable-to-adverse, and adverse-to-favourable)
are xw/Lc = 0.05, 0.5, and 1.0, respectively. The two transitions from adverse to
favourable occurring in the concave surfaces are sudden and may be classified as step
changes. The transition from favourable to adverse at the bump summit is gradual.
Also shown in figure 8(b) are the threshold values suggested by Patel (1965) for onset
of the processes of separation (P+ = 0.09) and relaminarization (P+ = −0.018). For
0.67 < xw/Lc < 0.99, P+ > 0.09, and in this region the boundary layer experiences
intermittent reversal in a thin region near the wall but on average remains attached
(see figure 11).

Figure 9(a) shows the integral parameters. Unless otherwise stated, the boundary
layer thickness δs, displacement thickness δ∗s and momentum thickness θs are cal-
culated in the (n, s) system based on 99% of the local edge velocity Ue(n, s). The
variations of θs, δ

∗
s and δ∗s /θs (the shape factor) are qualitatively similar to those

measured in the flow over a hill by Baskaran et al. (1987). The constant shape factor
on the downstream flat plate indicates that the flow is relaxing towards equilibrium
(see also Bandyopadhyay & Ahmed 1993). This relaxation process is more clearly
shown in figure 9(b) where the Clauser parameter G is plotted against the streamwise
pressure gradient parameter β following Bandyopadhyay & Ahmed (1993),

G =

∫ δs

0

[(Ue − 〈us〉)/Uσ]
2dn∫ δs

0

[(Ue − 〈us〉)/Uσ]dn

, β =
δ∗s
σw

d〈pw〉
ds

, (4.2)

where Uσ is the friction velocity. At the inlet, the LES pre-computation yields the
equilibrium value G ≈ 6 (e.g. see Tennekes & Lumley 1972). Over the upstream flat
plate the departure from equilibrium (G ≈ 6, β = 0) is along positive β (adverse
pressure gradient) with an increase in G. At the onset of curvature, G turns back
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with the reduction of adverse pressure gradient; β changes sign in the middle of
the concave surface (see also figure 8b). The second turning point in the trajectory
occurs at the (upstream) concave-to-convex tangent where the pressure gradient starts
to become less favourable. In the region of decreasing favourable pressure gradient
upstream of the summit the Clauser parameter exhibits relatively little change, but the
strong adverse pressure gradient on the downstream side carries the flow to a strong
departure from equilibrium (note that the trajectory is closed but cannot be shown
completely on the present scale due to this strong departure). Over the downstream
concave surface, β sharply decreases (decreasing adverse pressure gradient) and on
the downstream flat plate G relaxes back towards its inlet value. At x/Lc = 3/2,
G = 5.7, within 6% of the upstream equilibrium value.

The skin friction coefficient, Cf = σw/
1
2
U2
ref , is shown in figure 10(a). The friction

coefficient exhibits an interesting response to the combined perturbations in pressure
gradient and curvature. Generally speaking, Cf tends to decrease when a boundary
layer is subjected to adverse pressure gradient or convex curvature; favourable pres-
sure gradient or concave curvature tends to increase Cf (e.g. see Bandyopadhyay &
Ahmed 1993). The distribution shown in figure 10(a) is similar to that measured by
Baskaran et al. (1987) over a hill. The decrease in Cf for 0.15 < xw/Lc < 0.5 is due
to the the dominance of convex curvature over favourable pressure gradient; the
plateau for 0.75 < xw/Lc < 0.85 is related to the incipient detachment occurring in
this region (see figure 11). Near the leading and trailing edge of the bump Cf exhibits
rapid increases at locations where the streamwise pressure gradient undergoes step
changes from adverse to favourable. The rapid increases in Cf and step changes in
pressure gradient also occur near curvature transitions (flat-to-concave upstream of
the summit and convex-to-concave downstream of the summit).

The two abrupt increases in Cf imply quasi-step changes in the near-wall velocity
gradient ∂〈us〉/∂n. Thus, production terms dependent on ∂〈us〉/∂n in the transport
equations for second-order turbulence statistics will be expected to show large in-
creases in the near-wall region. In particular, shear production of the streamwise
intensity, Reynolds shear stress, and turbulence kinetic energy in the boundary
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layer Reynolds stress transport equations over curved surfaces involve ∂〈us〉/∂n,
and can be expressed as −〈u′su′n〉(1 + n/R)∂〈us〉/∂n, 〈u′2n 〉(1 + n/R)∂〈us〉/∂n, and
−〈u′su′n〉(1 + n/R)∂〈us〉/∂n, respectively (Gibson et al. 1981). On the other hand, shear
production terms of the wall-normal and spanwise intensities do not directly involve
∂〈us〉/∂n. Thus, if the quasi-step change in Cf is central to the explanation of internal
layer generation at a curvature discontinuity, signatures (knee points, for example)
should manifest themselves first in the distributions of the streamwise intensity, kinetic
energy, and shear stress rather than wall-normal and spanwise intensities. It should
be noted that this is in fact the case in the measurements of Webster et al. (1996)
(see figures 3–5). The present proposition that a quasi-step increase in Cf selectively
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modifies near-wall shear production of turbulent stresses and leads to formation of
an internal layer will be further elaborated in §4.2.

The variations of the relative intensity of streamwise fluctuating wall shear stress
σ′w,rms/σw with β are shown in figure 10(b). Along the upstream flat plate, the two
concave surfaces and the downstream convex surface σ′w,rms/σw vary almost linearly
with β. It is also clear that over the upstream convex surface (β < 0) σ′w,rms/σw
is relatively constant and therefore nearly unaffected by the decreasing favourable
pressure gradient and the suppressing effect of convex curvature. This in turn shows
that the nature of the near-wall turbulence over the upstream convex surface is
different from that over most of the downstream bump surface. As discussed in §4.3
using the budget equation of the turbulence kinetic energy, there exists an inner
energy-equilibrium region on the upstream convex surface. The distinctly different
distributions of σ′w,rms/σw before and shortly downstream of the summit is one of the
indications that development of the inner region is interrupted by the strong adverse
pressure gradient along the downstream surface. Along the downstream flat plate, the
relative r.m.s. wall shear stress fluctuations return rapidly to the upstream equilibrium
levels. At x/Lc = 3/2, σ′w,rms/σw is within 6% of the inlet value.

In a boundary layer subjected to adverse pressure gradient, the near-wall flow
may exhibit intermittent reversal. The degree of intermittent reversal can be quan-
tified using a surface forward-flow intermittency factor, γ+,w , which is defined as
the fraction of time that the surface streamline is in the downstream direction, i.e.∑
t(us,w > 0)/

∑
t (Simpson et al. 1981a). Incipient detachment is defined as instan-

taneous backflow 1% of the time (γ+,w = 0.99); intermittent transitory detachment
occurs with instantaneous backflow 20% of the time (γ+,w = 0.80); transitory detach-
ment is defined as instantaneous backflow 50% of the time (γ+,w = 0.50). Figure 11(a)
shows that the surface streamline along the downstream side of the convex surface
experiences incipient detachment at xw/Lc = 0.7 and intermittent transitory detach-
ment at xw/Lc = 0.86, but does not undergo transitory detachment, in qualitative
agreement with the visualizations discussed in Webster et al. (1996). Figure 11(a)
also shows that γ+,w develops slowly upstream of the maximum backflow station
(γ+,w = 0.56 at x/Lc = 0.92), but relaxes quickly back to unity downstream; similar
behaviour was observed by Na & Moin (1996) in a separated flat-plate boundary
layer. After the maximum backflow station, the second downstream location where
γ+,w = 0.80 is attained at xw/Lc = 0.96 and γ+,w = 0.99 at xw/Lc = 1.02. Such
asymmetry can be more clearly seen in figure 11(b) where the wall-normal pro-
files of the backflow intermittency factor γ−(n) =

∑
t{us(n) < 0}/

∑
t are shown.

The extent of the intermittent backflow region is limited to a thin layer close to
the surface with a maximum wall-normal extent 0.95θref . It is interesting that the
results shown in figure 11 indicate that the present boundary layer over the rear
surface within 0.7 6 xw/Lc 6 1.02 belongs to a unique category in that the up-
stream intermittent detachment occurring between xw/Lc = 0.7 and 0.92 does not
lead to a downstream mean flow separation. Rather, the downstream layer undergoes
an intermittent reattachment between xw/Lc = 0.92 and 1.02. In previous studies,
instantaneously detaching flows are followed by a downstream mean flow separa-
tion and instantaneously reattaching flows are proceeded by a detachment (e.g. see
Simpson et al. 1981a, b; Buckles et al. 1984 and Singh & Azad 1995a, b). Thus, it is
of interest to compare the behaviour of turbulence statistics in these two types of
flows.

Wall-normal profiles of the mean streamwise velocity are shown in figure 12.
Generally, favourable pressure gradient and concave curvature tend to reduce the
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wake factor, adverse pressure gradient and convex curvature tend to increase it (e.g.
see Moser & Moin 1987). Figure 12(a) shows that the mild adverse pressure gradient
over most of the upstream flat plate does not cause a significant distortion of the
profiles. As the flow approaches the bump, the relatively strong adverse pressure
gradient near the flat-to-concave tangent causes 〈us〉+ to rise noticeably above the
log law, the upstream concave surface and strong favourable pressure gradient then
cause the mean profile to dip below the logarithmic region at xw/Lc = 1/24. Similar
behaviour was observed in the experiments of Baskaran et al. (1987) and Barlow &
Johnston (1988). Over the upstream convex surface (figure 12b), the profiles collapse
well below n+ = 10, but not further away from the wall. Figure 12(c) shows that over
the downstream side of the bump in the region of strong adverse pressure gradient
the profiles are strongly distorted compared to the log law. Unlike the flow over
the upstream convex surface, the profiles do not collapse even below n+ = 10 and
the degree of departure from equilibrium is very strong in this region. Figure 12(c)
also shows that at xw/Lc = 23/24, concave curvature again causes the profile to
dip compared to the profile at xw/Lc = 11/12. Perry & Schofield (1973) found
that the mean velocity profiles in many adverse pressure gradient boundary layers
with −〈u′su′n〉max > 1.5σw (as in the present flow) obey a half-power law. Although
not shown here, the velocity profiles on the downstream convex surface do not
obey the Perry–Schofield half-power law, which further highlights the significant
departure from equilibrium of the boundary layer. On the downstream flat plate,
the profiles at xw/Lc = 7/6, 4/3 and 3/2 collapse below n+ = 10, similar to those
shown in figure 12(b). Following the removal of the pressure gradient and curvature
perturbations, the mean flow relaxes back towards its inlet profile. At xw/Lc = 3/2
(less than four reference boundary layer thicknesses from the removal of curvature),
〈us〉+ has a logarithmic region to about n+ = 80. Measurements from Webster et al.
(1996) show that by six reference boundary layer thicknesses following the removal
of curvature the mean velocity has fully recovered to the flat-plate profile. Thus, both
the simulations and experiments show a rapid return to equilibrium of the mean
flow.
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4.2. Turbulence statistics

Wall-normal profiles of the turbulence kinetic energy K are shown in figure 13 to
further elucidate the first two issues outlined in §1.3, i.e. existence and development of
the internal layers, and the process of return to equilibrium. As shown in figure 13(a),
the weak adverse pressure gradient on the upstream flat plate has a small effect on
the kinetic energy. Close to the wall the adverse pressure gradient causes K to slightly
increase, and this increase continues as the flow approaches the bump. At the onset
of curvature (xw/Lc = 0), the relatively large adverse pressure gradient has caused a
30% increase in the peak K compared to the inlet value. Comparison of the profile
at the onset of curvature to that in the middle of the concave surface (xw/Lc = 1/24)
immediately after the adverse-to-favourable pressure gradient transition indicates that
beyond n/θref = 0.5, K is unchanged and therefore has not been affected by either
the adverse-to-favourable pressure gradient transition or the concave surface. Close
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to the wall the kinetic energy is influenced by the favourable pressure gradient as
evidenced by the decrease in the peak value.

Figure 13(b) shows that at the exit of the upstream concave surface (xw/Lc = 1/12),
the peak kinetic energy has decreased by 20% compared to the value at xw/Lc = 0.
Over the upstream convex surface (xw/Lc = 1/6, 1/3, 1/2), several interesting features
in the profiles are apparent. For a large part of the layer (0.6 < n/θref < 4) K decreases
downstream under the stabilizing effect of favourable pressure gradient and convex
curvature; however, the peak in the profile increases with downstream evolution. This
increase takes place despite the presence of strong convex curvature and favourable
pressure gradient, indicating a clear difference between the near-wall flow and outer
region of the boundary layer. Also note from figure 13(b) that the location of the
peak shifts slightly away from the wall from 0.12θref at xw/Lc = 1/12 to 0.2θref at
xw/Lc = 1/2.

Figure 13(c) shows that downstream of the bump summit, K is dominated by
increasing adverse pressure gradient for n/θref < 4 as evidenced by the significant
increase in the peak from 0.012 at xw/Lc = 2/3 to 0.015 at xw/Lc = 5/6. The
near-wall profiles of the kinetic energy downstream of the summit at xw/Lc = 5/6
and 11/12 are noticeably different from those along the upstream convex surface at
(xw/Lc = 1/6, 1/3, 1/2) and at xw/Lc = 2/3. As the boundary layer develops along
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the upstream convex surface the turbulence kinetic energy in the near-wall region
exhibits a consistent streamwise variation with a monotonic and modest increase
in the peak value and noticeable reduction further away from the wall to about
n/θref = 4. The development is quite different downstream of the summit in the
region of adverse pressure gradient (e.g. xw/Lc = 5/6) where the profile exhibits a
significant increase from the wall to approximately n/θref = 2. Note also that the
peak values in the profiles do not exhibit a monotonic trend near the downstream
concave region. The consistent streamwise variation prior to xw/Lc = 2/3 is a result
of the development of an internal layer whose growth is interrupted by the strong
adverse pressure gradient on the downstream side of the bump (see also §4.3).

The profiles after the concave-to-flat tangent in figure 13(d) show that the near-wall
flow (n < 0.5θref) evolves differently from that further away from the wall. Immediately
after the adverse-to-favourable pressure gradient change at xw/Lc = 1, there is a knee
in the profile near n/θref = 0.1, which is the beginning of a new inner peak. The outer
peak further away is a result of the adverse pressure gradient and concave surface. At
xw/Lc = 7/6, the outer peak has decayed significantly and is nearly equal to the new
inner peak. As the flow develops further downstream the turbulence kinetic energy
decays rapidly for 0.5 < n/θref < 3, while the peak close to the wall remains nearly
unchanged. Note that both the location and level of the inner peak at xw/Lc = 3/2
are not far from those at the inlet shown in figure 13(a), indicating a monotonic and
relatively rapid return to equilibrium. Overall, the streamwise evolution of K shown
in figure 13 demonstrates the existence of the two internal layers near the leading and
trailing edge which is consistent with the proposition that the quasi-step increases in
Cf are responsible for formation of the internal layers (cf. figure 10a in §4.1). Further,
the above analysis shows that the development of the upstream internal layer is
disrupted shortly after the summit by strong adverse pressure gradient.

The similarity of the present boundary layer to previous flows experiencing detach-
ment, separation, and reattachment, as well as the process of return to equilibrium
can be further studied through one of the key descriptors in understanding boundary
layer development over curved surfaces, namely, the ratio of the normal to streamwise
turbulent stresses (e.g. see Webster et al. 1996; Patel & Sotiropoulos 1997). Figure 14
shows the wall-normal profiles of 〈u′2n 〉/〈u′2s 〉. Similar to Baskaran et al. (1987), the
mild adverse pressure gradient over the upstream flat plate increases streamwise fluc-
tuations while decreasing wall-normal fluctuations, which results in a reduction in
〈u′2n 〉/〈u′2s 〉. In the middle of the upstream concave surface (xw/Lc = 1/24), 〈u′2n 〉/〈u′2s 〉
increases compared to the profile at the onset of curvature because 〈u′2s 〉 is reduced
by favourable pressure gradient while 〈u′2n 〉 is enhanced by the concave curvature (see
also Baskaran et al. 1987; Barlow & Johnston 1988). Figure 14(b) shows that over
the upstream convex surface 〈u′2n 〉/〈u′2s 〉 decreases monotonically with streamwise dis-
tance. Although not shown here, the wall-normal stress 〈u′2n 〉 decreases monotonically
with downstream evolution while the streamwise stress 〈u′2s 〉 exhibits a development
similar to the turbulence kinetic energy (figure 13b). This is particularly interesting
because it is consistent with the analysis in §4.1 that signatures of the internal layer
are more pronounced in the streamwise intensity than wall-normal fluctuations. The
reduction of 〈u′2n 〉 by convex curvature is then principally responsible for the de-
crease in 〈u′2n 〉/〈u′2s 〉. Downstream of the bump summit, figure 14(c) shows that for
n/θref > 1, 〈u′2n 〉/〈u′2s 〉 continues to decrease because of the effect of convex curvature.
Close to the wall the intermittent reverse flow region caused by the adverse pressure
gradient increases wall-normal fluctuations and decreases the streamwise fluctuations
(e.g. see Singh & Azad 1995a), leading to an increase in this region in 〈u′2n 〉/〈u′2s 〉.
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The increase is further enhanced over the concave region due to a relatively large
increase in wall-normal fluctuations. Thus, the adverse pressure gradient and concave
curvature near the trailing edge strongly distort the boundary layer, as evidenced by
the inner peak in 〈u′2n 〉/〈u′2s 〉. Over the downstream flat plate the profiles rapidly relax
towards the inlet values. The behaviour of the shear stress and normal stress ratio
in the present flow is quite different than that measured in previous experiments on
boundary layers experiencing extended convex curvature (in the absence of an exter-
nal pressure gradient), in which the shear stress is strongly reduced and the normal
stresses approach isotropy (e.g. see So & Mellor 1973; Gillis & Johnston 1983; Alving
et al. 1990). Thus, it should be expected that the relaxation process will be different
than the slow recovery observed in boundary layers recovering from convex curvature
(see also Webster et al. 1996).

In addition to the mean and fluctuating velocities, another important statistical
descriptor of the boundary layer is the r.m.s. pressure fluctuations. As discussed in §2.1,
since the trace of the SGS stress, τkk , was not explicitly modelled, the statistics shown
in figure 15 include the contribution of the SGS normal stresses. R.m.s. wall pressure
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fluctuations are shown in figure 15(a). The two peaks in p′w,rms/
1
2
U2
ref are located near

the concave-to-convex tangent and the concave-to-flat tangent, respectively. Buckles
et al. (1984) found in a separated flow over a wavy surface that p′w,rms increases at
detachment to a maximum just downstream of reattachment (see also Na & Moin
1996). As shown in figure 15(a), p′w,rms begins to increase over the downstream bump
surface at the location of incipient detachment (xw/Lc = 0.7), and attains a maximum
just downstream of the location where γ+,w = 0.99 (xw/Lc = 1.02), in qualitative
agreement with the measurements of Buckles et al. (1984). Figure 15(a) also shows
the r.m.s. surface pressure fluctuation normalized by the maximum total shear stress
σmax. The values of p′w,rms/σmax over the upstream flat plate are in general agreement
with existing measurements in equilibrium adverse pressure gradient boundary layers
(Simpson et al. 1987). Simpson, Ghodbane & McGrath (1987) observed that in
a separated flat plate flow p′w,rms/σmax increases to the detachment location and
decreases downstream. Figure 15(a) shows that p′w,rms/σmax increases to the position
of intermittent transitory detachment, and remains high to about the location of
the strongest intermittent backflow before decreasing significantly. The locus of the
maximum pressure fluctuations is shown in figure 15(b). In the region of intermittent
reversal the locus of p′rms,max moves away from the wall and coincides with the outer
extremities of the region of intermittent backflow. Although not shown here, the loci
of the maximum turbulence stresses also coincide with the outer extremities of the
intermittent backflow region along the rear bump surface. This is consistent with
the observation of Singh & Azad (1995b) in flows approaching separation. Thus,
the pressure fluctuations in the present boundary layer which exhibits intermittent
detachment/reattachment are very similar to previous measurements obtained in
detaching/separated/reattaching flows. R.m.s. pressure fluctuations along the wall-
normal direction are shown in figure 15(c). The profiles over the upstream flat plate
(xw/Lc = −1/6) are similar to the DNS results of Spalart (1988) and the experimental
results reviewed by Willmarth (1975). Consistent with the behaviour observed in the
turbulent stresses, on the downstream flat plate the profiles approach that of the
upstream flat plate monotonically.

The spanwise spectra of the surface pressure fluctuations along the bump surface
are shown in figure 16. Na & Moin (1996) have shown that when scaled by the r.m.s.
wall fluctuation, pw,rms, frequency spectra exhibit relatively small scatter in an adverse
pressure gradient boundary layer. They also found that the power spectra at high
frequencies increase with increasing adverse pressure gradient. The results presented
in figure 16(b) show similar features. Over the rear bump surface where an adverse
pressure gradient prevails the spectra collapse at low wavenumbers, and increase at
high wavenumbers with increasing adverse pressure gradient. Figure 16(a) shows that
over the upstream bump surface the spectra also collapse at low wavenumbers, and
decrease at high wavenumbers under the influence of the favourable pressure gradient
as the flow approaches the summit.

Additional insights into the similarities and differences between the present inter-
mittent detaching/reattaching boundary layer over the rear surface of the bump and
existing measurements on flows exhibiting detachment, separation, and reattachment
are illustrated in figure 17. Shown in the figure is the streamwise variation of the
relative strength of the large eddies, Es, as defined by Castro & Bradshaw (1976),

Es =
〈q u′n〉max − 〈q u′n〉min

〈q 〉1.5max
, (4.3)

where q is twice the instantaneous turbulence kinetic energy (see also Singh & Azad
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1995a, b). Subscripts min and max refer to local extremities along a wall-normal
traverse. Figure 17 shows that there are significant increases in Es over the upstream
and downstream concave surfaces. This is consistent with the conclusion of Barlow
& Johnston (1988) that the strength of the large eddies is markedly enhanced by
concave curvature. On the trailing flat plate, Es returns monotonically towards the
upstream equilibrium value. It is also found that the trajectory of Es exhibits a linear
dependence on the intermittency backflow factor γ−(0), identical to that reported by
Singh & Azad (1995b) in intermittently separating flows.

4.3. Turbulence kinetic energy budget

The second-order statistics presented in §3 and §4.2 demonstrate behaviour consistent
with the proposition discussed in §4.1 that quasi-step increases in Cf induce an
internal layer by enhancing the near-wall shear production of 〈u′2s 〉, K , and 〈u′su′n〉.
These statistics also convincingly show that development of the upstream internal
layer is disrupted shortly downstream of the summit by the strong adverse pressure
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gradient. The mean flow and second-order statistics in the region of intermittent
detachment/reattachment (0.7 < xw/Lc < 1.02) also exhibit a strong similarity to
measurements in detaching/separated/reattaching flows. In addition, profiles of the
mean velocity and second-order statistics presented in §3, §4.1 and §4.2 show a rapid
return to equilibrium downstream of the bump trailing edge. In this section the
response of turbulence kinetic energy to streamwise pressure gradient and surface
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curvature will be analysed in greater detail using its transport equation for boundary
layers in the streamline-normal coordinate system to gain further insights into these
important properties.

Following Castro & Bradshaw (1976) (see also Gibson et al. 1981; Baskaran, Smits
& Joubert 1991), the equation for the resolved kinetic energy can be written as

−
[
〈us〉

∂

∂s
+
(

1 +
n

R

)
〈un〉

∂

∂n

]
K − 〈u′su′n〉

(
1 +

n

R

) ∂〈us〉
∂n

− 〈u′su′n〉
[
∂〈un〉
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− 〈us〉

R

]
− (〈u′2s 〉 − 〈u′2n 〉)

[
∂〈us〉
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〈un〉
R

]
− ∂

∂s

(
〈p′u′s〉+ 〈 1

2
qū′s〉

)
− ∂

∂n

[(
1 +

n

R

) (
〈p′u′n〉+ 〈 1

2
qū′n〉

)]
+ D1 = 0. (4.4)

The first four terms on the left-hand-side of (4.4) can be interpreted as advection,
shear production, curvature production, and normal stress production, respectively;
the next two terms can be viewed together as turbulent diffusion; the last term D1

contains primarily dissipation plus viscous diffusion and terms resulting from the
filtering operation (e.g. see Moin & Kim 1982). As shown by Baskaran et al. (1987),
the normal stress production term can be written as (〈u′2s 〉 − 〈u′2n 〉)(1 + n/R)∂〈un〉/∂n
using the continuity equation. The effect of the streamwise pressure gradient can also
be linked to ∂〈un〉/∂n. For instance, ∂〈us〉/∂s < 0 in a decelerated two-dimensional
incompressible flow due to adverse pressure gradient has ∂〈un〉/∂n > 0. Thus, as
also discussed by Smits & Wood (1985), changes in normal stress production can be
interpreted as caused by changes in streamwise pressure gradient.

The terms appearing in (4.4) at 12 streamwise stations are shown in figure 18. At
the inlet, the LES pre-computation yields the budgets of a canonical zero-pressure-
gradient boundary layer (e.g. see Spalart 1988). At the onset of curvature (xw/Lc = 0)
the positive normal stress contribution due to adverse pressure gradient becomes
comparable to the shear production (figure 18b). This is consistent with the increase
in the peak kinetic energy shown in figure 13a. In the middle of the upstream concave
surface (xw/Lc = 1/24) immediately following the step change in pressure gradient



260 X. Wu and K. D. Squires

–0.4

B
ud

ge
ts

 o
f 

K

0

n/θref

0.4 0.8 1.2 1.6 2.0

–0.2

0

0.2

0.4 (e) xw/Lc =1/6

–0.3
0

n/θref

0.4 0.8 1.2 1.6 2.0

–0.1

0

0.2

0.3 ( f ) xw/Lc =1/3

–0.3

B
ud

ge
ts

 o
f 

K

0 0.4 0.8 1.2 1.6 2.0

–0.2

–0.1

0.2

0.1

(c) xw/Lc =1/24

–0.4

0 0.4 0.8 1.2 1.6 2.0

–0.2

0

0.2

0.4 (d ) xw/Lc =1/12

–0.2

B
ud

ge
ts

 o
f 

K

0 0.4 0.8 1.2 1.6 2.0

–0.1

0

0.1

0.2
(a) xw/Lc = –3/10

–0.2
0 0.4 0.8 1.2 1.6 2.0

–0.1

0

0.1

0.2
(b) xw/Lc = 0

–0.6

0.1

–0.2

0

Figure 18 (a–f). For caption see facing page.



Numerical investigation of a turbulent boundary layer 261

–0.3

B
ud

ge
ts

 o
f 

K

0

n/θref

0.4 0.8 1.2 1.6 2.0

–0.2

0

0.1

0.2 (k) xw/Lc = 7/6

0

n/θref

0.4 0.8 1.2 1.6 2.0

–0.1

0

0.2 (l) xw/Lc = 3/2

–0.2

B
ud

ge
ts

 o
f 

K

0 0.4 0.8 1.2 1.6 2.0

–0.1

0.1

0.2 (i) xw/Lc =11/12

–0.2

0 0.4 0.8 1.2 1.6 2.0

–0.1

0

0.2 ( j) xw/Lc =1

–0.2

B
ud

ge
ts

 o
f 

K

0 0.4 0.8 1.2 1.6 2.0

–0.1

0

0.1

0.2
(g) xw/Lc = 2/3

–0.2

0 0.4 0.8 1.2 1.6 2.0

–0.1

0

0.1

0.2
(h) xw/Lc = 5/6

–0.3

0.1

–0.2

0

–0.3

0.1

2.4 2.8

–0.1

2.4 2.8

Figure 18. Turbulence kinetic energy budgets: •, advection; ——, shear production; – – – – –,
normal stress production; 4, curvature production; +, turbulent diffusion; · · · · ·, difference; all
terms multiplied by 102θref/U

3
ref .



262 X. Wu and K. D. Squires

from adverse to favourable, the normal stress production is significantly negative
(figure 18c). Knee points appear in the profiles of shear production and dissipation
and the peaks are located closer to the wall as compared to the profiles at xw/Lc = 0.
Near the wall over the upstream convex surface (xw/Lc = 1/12, 1/6, 1/3), shear
production and dissipation are nearly in balance and are also much larger than in
the outer part of the layer. As the flow approaches the summit the peaks in shear
production and dissipation gradually shift outward. As discussed in Townsend (1976),
a boundary layer subjected to abrupt changes in external conditions may establish an
inner region in which an energy equilibrium between production and dissipation is
established, and motion in the inner region is determined primarily by local conditions.
Britter, Hunt & Richards (1981) also noted that the evolution of a boundary layer
flowing over a Gaussian hill can be considered using a two-layer model, i.e. an inner
energy-equilibrium region governed mostly by local conditions and an outer region
primarily under the influence of inviscid effects. The large shear production and
dissipation below n/θref = 0.2 shown in figure 18(d–f) further support the fact that
the response of the boundary layer occurs through development of an internal layer.
As indicated in figure 18(c), the origin of this inner region can be traced to the profiles
upstream of the concave-to-convex tangent (after the adverse-to-favourable pressure
gradient transition), i.e. knee points and the inward shift in the peak in the profiles
of the shear production and dissipation. Also note in figure 18(e) that the production
beyond n/θref = 0.4 is nearly zero due to the stabilizing effect of convex curvature
and favourable pressure gradient.

The profiles of the budget terms over the downstream surface shown in figure 18(g–i)
are not similar to those over the upstream convex surface in which there exists
an inner energy-equilibrium region. The locations of the peak in shear production
and dissipation are displaced away from the wall by the strong adverse pressure
gradient; the contribution from normal stress production is also comparable to shear
production. Corresponding to the displacement in the peak production are the in-
creased levels of kinetic energy away from the wall (cf. figure 13). Figure 18(g–i)
also shows that in the region of intermittent flow reversal, the turbulent diffusion
term becomes large, which is similar to the report by Simpson et al. (1981b) that as
separation is approached turbulent diffusion becomes increasingly significant. Since
shear production and dissipation are no longer the only dominant terms in the
kinetic energy balance, the strong adverse pressure gradient along the downstream
surface has interrupted the development of the internal layer. This is consistent with
the distinctly different profiles of the kinetic energy upstream and downstream of
xw/Lc = 2/3 shown in figure 13, which further demonstrates that the inner region
which develops over the upstream surface has been interrupted by the strong adverse
pressure gradient shortly after the bump summit.

At xw/Lc = 1 where the concave-to-flat tangent is located and the adverse-to-
favourable pressure gradient transition takes place, favourable pressure gradient
makes a significant negative contribution to the transport of turbulence kinetic
energy. Note also that there is strong similarity in the inner-region (n/θref < 0.2)
profiles shown in figure 18(j) and those in figure 18(c), with the peaks in shear
production and dissipation located very close to the wall and knee points apparent in
the profiles. From xw/Lc = 1 to 3/2, the locations of the peak shear production and
dissipation shift slowly outward. This behaviour is again consistent with the formation
and growth of a new internal layer. Over the downstream flat plate, production for
n/θref > 0.5 becomes increasingly negligible compared to that in the inner region as
the flow relaxes from the removal of perturbations in curvature and pressure gradient.



Numerical investigation of a turbulent boundary layer 263

By xw/Lc = 3/2, the budgets have nearly asymptoted to those at the inlet shown in
figure 18(a). The decay of kinetic energy away from the wall corresponding to the
decrease in production in this region and re-establishment of inner shear production
coincides with the rapid recovery of the kinetic energy shown in figure 13(d).

5. Model response
Most information on characteristics of dynamic models has been acquired in

canonical flows such as isotropic turbulence and turbulent channel flow (e.g. see
Meneveau et al. 1996). As shown in §4, perturbations in pressure gradient and surface
curvature cause a strong distortion of boundary layer turbulence, i.e. suppression
over the summit, amplification near the trailing edge and rapid recovery along the
downstream plate. The flow over the bump then provides a unique platform for
the examination of model response to external perturbations in a well-defined non-
equilibrium boundary layer.

One of the most interesting features of the dynamic eddy viscosity model is that,
while the model is mostly dissipative, the quantity LijMij which appears in the
numerator of (2.13) can be positive or negative. On average LijMij is negative and
the coefficient C is positive, reflecting the fact that on the average the small scales
are dissipative. Piomelli (1993) and Mason (1994) have shown that the effect of
regions where LijMij is positive reduces the level of the coefficient thereby accounting
for subgrid-scale backscatter, albeit in an average sense. The positive and negative
contributions to the model coefficient can be expressed as

C+ = −1

4

〈LijMij − |LijMij |〉
〈MijMij〉

, C− = −1

4

〈LijMij + |LijMij |〉
〈MijMij〉

, (5.1)

where C+ > 0 and corresponds to forward transfer of energy (from large to small
scales) while C− < 0 corresponds to a backscatter of energy from the SGS to resolved
motions (see Piomelli 1993; Najjar & Tafti 1996). Figure 19 shows the ratio of the
model coefficient C to the Smagorinsky constant Cs = 0.12 along six representative
wall-normal traverses. Also shown are the related positive and negative contributions
from (5.1). At the inflow boundary x/Lc = −1/3 the profiles of C , C+, and C− are
similar to those in fully developed channel flow (Piomelli 1993). At the onset of
curvature x/Lc = 0, turbulence levels are enhanced by the relatively strong adverse
pressure gradient and the front concave surface (see figure 13a). As indicated in
figure 19(b), the model responds by yielding a coefficient C about two times larger in
the near-wall region than that at the inlet. At the bump summit (x/Lc = 1/2), convex
curvature and favourable pressure gradient suppress turbulent fluctuations causing a
significant decrease in C . At the trailing edge the strong adverse pressure gradient and
concave curvature significantly elevate turbulence levels and the peaks of turbulence
kinetic energy and shear stress are located far from the wall (cf. figure 13c, see also
Webster et al. 1996). In response, at x/Lc = 1 the dynamic model yields a coefficient
C nearly five times larger than that at the inflow boundary. The positive and negative
contributions C+ and C− show similar increases. Over the downstream flat plate the
profiles rapidly return to those at the upstream reference station.

Figure 20 shows the percentage of points where the product LijMij takes positive
values (i.e. locally negative C). These profiles exhibit a strikingly close dependence on
the enhanced/suppressed turbulence levels due to external perturbations in streamwise
pressure gradient and surface curvature. Using the profile in figure 20(a) at the inlet
as a reference, the weak adverse pressure gradient over the upstream flat plate has a
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mild effect as seen in the small differences in the profiles at x/Lc = −1/3 and −1/6.
At the onset of curvature, x/Lc = 0, turbulence fluctuation levels are enhanced by
concave curvature and adverse pressure gradient (see figure 13a). At this location the
percentage of points where LijMij > 0, corresponding to a locally negative coefficient,
decreases. Thus, while both the (average) positive and negative contributions to the
coefficient increase at this location (figure 19), there is a relatively larger forward
transfer of energy and decreased likelihood of backscatter. In contrast, at the bump
summit where the coefficient is reduced by the stabilizing effects of favourable pressure
gradient and convex curvature, the model predicts an increasingly larger fraction of
points where the coefficient is locally negative. Since the small scales evolve on shorter
time scales, their response to changes in external conditions will be more rapid than
for the large scales. The relative increase in reverse flow of energy is then possibly
one consequence of the more rapid adjustment of the smaller scales. In the near-wall
region, the percentage of points corresponding to negative C at the summit has
increased by nearly a factor of two compared to the bump leading edge.

As may be observed in figure 20(b), the behaviour of the model along the rear
surface of the bump is extremely interesting. In this region turbulent fluctuation levels
have been substantially increased and peak values displaced away from the wall by
adverse pressure gradient (see figure 13c). The relative increase in the energy content
of the smallest resolved scales leads to a stronger transfer of energy to SGS motions.
A deficit in the profile is apparent at the trailing edge of the bump, which is correlated
with peak values of the kinetic energy, K , as well as production and dissipation of K
(see §4.3). While the SGS dissipation also increases (see figure 22), the dynamic model
predicts a greater likelihood of energy transfer from large to small scales. As the
boundary layer returns to equilibrium over the trailing flat plate, the profiles shown
in figure 20(b) also recover rapidly, coinciding with the decay of elevated turbulence
levels in the outer region (cf. figure 13d). At the last station x/Lc = 3/2 the profile
has nearly asymptoted to that at x/Lc = −1/3.

As discussed in §2.1, a clipping function is applied to (2.13) to remove negative
model coefficients following spanwise averaging. One measure of the effect of such an
operation is the ratio of model coefficients obtained with and without clipping, which
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is defined as
〈C〉no clipping

〈C〉 =
〈−〈LijMij〉/2〈MijMij〉〉t

〈max{0,−〈LijMij〉/2〈MijMij〉}〉t
, (5.2)

where t denotes averaging over time. Because negative values (if any) following
spanwise averaging will lower the model coefficient, 〈C〉no clipping 6 〈C〉. Figure 21
shows the profiles of (5.2) at eight streamwise locations from the Case 2 simulation.
Figure 21(a) and figure 21(b) both show that from the wall to approximately one
momentum thickness, virtually no clipping of the model coefficient was necessary in
the region where most of the turbulence production takes place. This is consistent with
other studies in which averaging over directions of statistical homogeneity yields model
coefficients which are rarely negative (e.g. see Ghosal et al. 1995). Between y/θref = 1
and 2, negative contributions to the model coefficient account for roughly 5% of 〈C〉,
again indicating that the overall effect of clipping is small. At the boundary layer edge
the magnitude of the negative contributions increases to about 30%, suggesting a
rather substantial effect of clipping on the calculated model coefficient in this region.
However, it must be noted that the mean strain rate is weak in the outer layer and
the SGS dissipation (hence the role of the model) becomes increasingly small near
the boundary layer edge. Thus, based upon the results shown in figure 21, clipping
the negative occurrences of −〈LijMij〉(x, y, t) is unlikely to result in any significant
difference between the present results and those in which no clipping is performed.

Perhaps the most important aspect of the model is providing the correct dissipation,
εsgs, of energy from large to small scales. Analogous to the decomposition of the model
coefficient above, the SGS dissipation can be expressed as

εsgs = ε+ + ε−, ε+ = −〈C+∆
2|S |3〉, ε− = −〈C−∆

2|S |3〉. (5.3)

Shown in figure 22 are profiles of the total SGS dissipation, in addition to the positive
(ε+) and negative (ε−) contributions along six representative vertical traverses. Similar
to the behaviour observed in figure 19, the levels of SGS dissipation increase/decrease
in response to the external perturbations in pressure gradient and curvature, i.e.
substantial suppression of εsgs at the bump summit, significant increase at the trailing
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edge, and rapid return to the equilibrium profiles at the inlet along the trailing flat
plate. Figure 22 shows that in regions where the SGS dissipation is large, there is a
tendency for a relatively larger increase in ε+ compared to ε−. The strong correlation
between model properties and the state of the flow illustrated in figures 19–22 is
striking and provides further evidence of the ability of the dynamic model to properly
reflect changes in the spectral content of the turbulence.

6. Summary
Large-eddy simulation of the spatially developing turbulent boundary layer over

a bump has been performed. A canonical flat-plate boundary layer introduced at
the inflow boundary to the bump was generated from a separate pre-computation.
The flow is then subject to perturbations in streamwise pressure gradient and surface
curvature and exhibits a strong departure from equilibrium along the bump surface,
eventually relaxing towards equilibrium over the downstream flat plate. In general,
LES predictions of the mean flow and turbulence intensities are in good agreement
with the data of Webster et al. (1996), with the greatest discrepancy occurring in
prediction of peak shear stress levels along the rear bump surface.

LES results were utilized for investigation of three related issues relevant to non-
equilibrium boundary layers, i.e. the existence, cause and development of internal
layers due to curvature discontinuity, the mechanism governing the return to equi-
librium over the trailing flat plate, and the characteristics of a flow experiencing a
cycle of intermittent detachment and intermittent reattachment. LES results confirm
the existence of internal layers over the bump upstream surface and the trailing flat
plate found previously in the experiments of Baskaran et al. (1987) and Webster et al.
(1996). Analysis shows that the cause of the internal layers is the quasi-step increase
in skin friction occurring near the bump leading and trailing edge which selectively
modifies near-wall shear production of turbulent stresses. This also explained several
features associated with internal layers arising from curvature change found in pre-
vious experiments such as the absence of knee points in spanwise and wall-normal
fluctuations at locations where the streamwise intensity displays distinct knees (Web-
ster et al. 1996), and the absence of an internal layer when the skin-friction increase
is rather gradual (Alving et al. 1990). The present results also clearly show that the
growth of the upstream internal layer is disrupted shortly downstream of the bump
summit by the strong adverse pressure gradient, rather than developing independently
from the parent boundary layer to the downstream curvature discontinuity or sepa-
ration. The boundary layer over the rear surface is unique in that it completes a cycle
of intermittent detachment and reattachment but without mean flow separation. The
properties of the flow in this region are qualitatively similar to those previously found
in detaching/separated/reattaching flows. The driving mechanism behind the rapid
return to equilibrium over the trailing flat plate found in the experiments of Webster
et al. (1996) has been explained using the turbulence kinetic energy budgets and
occurs through the simultaneous decay of the elevated turbulence shear production
away from the wall and the uninterrupted growth of an inner region characterized by
an equilibrium between shear production and dissipation.

The response of the dynamic eddy viscosity model of Germano et al. (1991) to the
simultaneous perturbations in streamwise pressure gradient and surface curvature was
also examined. Corresponding to suppressed/enhanced turbulence levels the model
yields substantially different values of the model coefficient and SGS dissipation.
The percentage of points where the coefficient is predicted to be locally negative is
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correlated with state of the flow. In regions where the flow is stabilized the relative
contribution of backscatter increases, while in regions where turbulence levels are
increased there is a relative increase in the transfer of energy from large to small
scales. Because dynamic models sample the flow field, even eddy viscosity formulations
are capable of accounting for some non-equilibrium effects. These aspects of the model
cannot be easily inferred from previous work in canonical, equilibrium turbulent flows
and motivate further application of the model to the complex flows of engineering
interest.
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